0.5-26 GHz Wideband Amplifier

Features

- Frequency Range : $0.5-26.0 \mathrm{GHz}$
- 11dB Nominal gain
- Mid-band Noise Figure < 3dB
- Input Return Loss > 10 dB
- Output Return Loss > 13 dB
- DC decoupled input and output
- $0.15 \mu \mathrm{~m}$ InGaAs pHEMT Technology
- Chip dimension: $3.0 \times 1.2 \times 0.1 \mathrm{~mm}$

Typical Applications

- Wideband LNA/Gain block
- Electronic warfare
- Test Instrumentation

Description

The AMT2175013 is a broadband pHEMT GaAs MMIC TWA designed to operate over 0.5 to 26 GHz frequency range. The design employs 4 cascode pHEMT cells in a distributed amplifier topology, to ensure larger bandwidth, flat gain and good return losses. The device offers a typical small signal gain of 11 dB over the operating frequency band and has a Noise figure less than 4.5 dB in $1-20 \mathrm{GHz}$ band. The Input \& output are matched to 50Ω with a VSWR better than 1.7:1. The chip is unconditionally stable over the entire operating frequency range.
The AMT2175013 is suitable for a variety of wideband electronic warfare systems such as radar warning receivers, jammers and instrumentation. In addition, the chip may also be used as a gain block.

Absolute Maximum Ratings ${ }^{(1)}$

Parameter	Absolute Maximum	Units
Positive DC voltage	+8	V
RF input power	+16	dBm
Supply Current	150	mA
Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

1. Operation beyond these limits may cause permanent damage to the component
Electrical Specifications ${ }^{(1)} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Zo}=50 \Omega ; \mathrm{Vd}=5.0 \mathrm{~V}, \mathrm{Vg} 2=2.0 \mathrm{~V}$ Vg1 $=-0.28 \mathrm{~V}$

Parameter	Min.	Typ.	Max.	Units
Frequency Range	0.5	-	26.0	GHz
Gain	-	11	-	dB
Gain Flatness	-	± 0.75	-	dB
Noise Figure (mid-band)	-	2.5	-	dB
Input Return Loss	-	10	-	dB
Output Return Loss	-	12	-	dB
Output Power (P1 dB)	-	5	-	dBm
Third Order Intercept point	-	14	-	dBm
Supply Current ${ }^{(2)}$	-	46	65	mA

Note:

1. Electrical specifications mentioned above are measured in a test fixture.
2. For optimal performance, the gate voltage Vg 1 should be tuned to achieve a drain current of 46 mA (typ.).
3. The negative gate supply (Vg1) can be tuned from 0 V to -0.3 V .
4. By varying the Vg 1 , the gain $\&$ current can be controlled to the user requirements.

Test fixture data
$\mathrm{Vd}=+5.0 \mathrm{~V}, \mathrm{Vg} 2=+2.0 \mathrm{~V} \& \mathrm{Vg} 1=-0.28 \mathrm{~V}$, Current $=46 \mathrm{~mA}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Test fixture data
$\mathrm{Vd}=+5.0 \mathrm{~V}, \mathrm{Vg} 2=+2.0 \mathrm{~V} \& \mathrm{Vg} 1=-0.28 \mathrm{~V}$, Current $=46 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$

Mechanical Characteristics

Units: millimeters (inches)
Note:

1. All RF and DC bond pads are $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$
2. Pad no. 1: RF In
3. Pad no. 4 : Vd
4. Pad no. $5:$ Vg2
5. Pad no. 8 : RF out
6. Pad no. $11: \mathrm{Vg} 1$

Recommended Assembly Diagram

Note:

1. Two 1 mil (0.0254 mm) bond wires of minimum length should be used for RF input and output.
2. Input and output 50 ohm lines are on 5 mil Alumina/RT Duroid substrate.
3. The supply voltages are $\mathrm{Vd}=5.0 \mathrm{~V}, \mathrm{Vg} 2=+2.0 \mathrm{~V} \& \mathrm{Vg} 1=-0.28 \mathrm{~V}$.
4. $0.1 \mu \mathrm{~F}$ capacitors may be additionally used as a second level of bypass at the power supplies for reliable operation.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of $150-200 \mu \mathrm{~m}$ length of wedge bonds is advised. Single Ball bonds of $250-300 \mu \mathrm{~m}$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly \& testing

All information and Specifications are subject to change without prior notice

